Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer-Teacher-Learner-Based Optimization Method

نویسندگان

چکیده

Predicting suspended sediment load (SSL) in water resource management requires efficient and reliable predicted models. This study considers the support vector regression (SVR) method to predict daily load. Since SVR has unknown parameters, observer-teacher-learner-based Optimization (OTLBO) is integrated with model provide a novel hybrid predictive model. The combined genetic algorithm (SVR-GA) used as an alternative To explore performance application of proposed models, five input combinations rainfall discharge data Cham Siah River catchment are provided. models assessed using various numerical visual indicators. results indicate that SVR-OTLBO offers higher prediction than other employed current study. Specifically, highest Pearson correlation coefficient (R = 0.9768), Willmott’s Index (WI 0.9812), ratio IQ (RPIQ 0.9201), modified index agreement (md 0.7411) lowest relative root mean square error (RRMSE 0.5371) comparison SVR-GA 0.9704, WI 0.9794, RPIQ 0.8521, md 0.7323, 0.5617) 0.9501, 0.9734, 0.3229, 0.4338, RRMSE 1.0829) respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron

Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...

متن کامل

A Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting

Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE

Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...

متن کامل

Short Term Load Forecasting Using A Hybrid Model Based On Support Vector Regression

This paper proposes a new hybrid method based on support vector regression (SVR) to predict the load value of power systems accurately. The proposed method will use the SVR to overcome some deficiencies such as overfitting and complicated structure that exist in the neural network. In order to find the optimal values of the parameters, krill herd (KH) algorithm is used as the optimizer. The KH ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complexity

سال: 2021

ISSN: ['1099-0526', '1076-2787']

DOI: https://doi.org/10.1155/2021/5540284